
King Abdulaziz University

EE-305

Uses of prime numbers in cryptography

Instructor: Dr. Emad Khalaf

Name: Hesham Banafa. ID: 1742275

Date: 20/4/2020

1

Table of contents

Abstract..3

Introduction..3

Importance of prime numbers..4

Algorithms for finding primes...4

Book algorithm...4

Miller-Rabin algorithm...5

The program (RSA)...5

Key generation..6

Encryption...6

Decryption...7

Signing..7

Cracking a public key...8

Conclusion...9

Appendix A..10

Basic prime test...10

(python):...10

(Flowchart):..11

Full code history in a git repository..11

Cracking Algorithm:...12

Bibliography..13

2

Abstract

In this paper, the importance of prime numbers in public key cryptography will be

discussed. The focus will be on how large prime numbers are found and used in computing other

values that are used in the RSA standard such as keys and why the prime numbers should be

large for security reasons. We’ll also review the methods to break the encryption. Furthermore,

the relation between the values offer asymmetric qualities that are not used only for encryption,

but verification of authors, senders or any entities holding a key such as a company or website.

Introduction

In today’s world, with millions of users are using the internet, the security of user data

and messages should be secure form outsiders. Cyryptography is an essential tool for any sort of

secure communication and is needed for keeping government secrets and documents safe from

other entities trying to harm a nation. There are many kinds of encryption that help with this task.

However, most methods require both sender and receiver to know a common password, phrase

or key. This can become difficult to achieve because sending the “Secret” over a connection will

give it away to anyone trying to listen in. To solve this problem, public key encryption became

wildly used in almost all connections.

In essence, public key encryption, gives the freedom to send a “key” to anyone who

wants to establish a secure connection without fear of insecurity. For example, The RSA

encryption algorithm uses key pairs that are labeled “public” and “private”. The public key is

then used to encrypt a message or any sort of data, to then be only decrypted with the

corresponding private key, making an asymmetric relation. The key pair can also be used for

making cryptographic signatures by doing to opposite operation. The signature is encrypted with

the message with the senders private key. Making it only readable by the senders public key.

Having unlocked the signature with a given public key makes sure to verify the origin of the

message. For example, let R be a relation between a and b using a public key, where a is the clear

text and b is encrypted text. Then it is true that a R b but not b R a due to the asymmetry found in

the system.

A common example of uses of asymmetric encryption is whenever a user connects to a

3

website, both parties exchange public keys to then use this method to encrypt a temporary

password that is used for symmetric encryption for transferring a lot of data. That is because

asymmetric encryption is usually slower than symmetric encryption such as AES.

4

Importance of prime numbers

Prime numbers are essential in the RSA algorithm due to their nature. Since prime

numbers have only two divisors, they can be used to make a key pair that can only be broken

using prime factorization, which can become vary difficult with large numbers. Making prime

numbers perfect for this application.

In the RSA system, two large prime numbers are randomly generated and used to make

other calculations to produce the key pair. For example,

Let p = 11 and q = 13

Let n = p*q = 143

Then the set factors of n is {1, 11, 13, 143}

This property is used with numbers larger than 24096, which makes calculating p or q near

impossible with today’s computers.

Algorithms for finding primes

This section will go over common algorithms used to find prime numbers which vary in

efficiency.

Book algorithm

 The algorithm found in the book check for primality using a simple process.

The algorithm goes as follows for checking x:

1. If 2 divides x, then the x is not prime. Otherwise continue.

2. Let K be the largest integer less than or equal the square root of x

3. Let 1 < D <= K. Check if for all D, if D divides x, then x is not prime. Otherwise

x is prime.

This algorithm is simple and effective for values less then 264 due to the nature of it

counting up to the square root of the number in question. For larger values, it is recommended to

use a different way. The flowchart and python code are in Appendix A.

5

Miller-Rabin algorithm

The Miller-Rabin method try’s to find if, a given n, is not prime rather than ‘is prime’. In

other words, it find if the number is composite and is probabilistic. Under our tests, it holds vary

well. The algorithm is as follows (Miller–Rabin primality test, 1967):

1. Given n is odd integer and n > 3

2. Let K = 10 (number of rounds)

3. Choose a; 1 < a < n -1

4. Write n - 1 = 2s *d where d is odd (factor powers of 2 of n-1)

5. Evaluate the sequence ad, (ad)2, (ad)4, ... , (ad)2^s = an-1 in mod n if a term in

the sequence evaluates to 1, then n is a composite and we say ‘a’ is a ‘witness for the

compositeness’. Otherwise, continue with another ‘a’.

6. If the ‘last’ term evaluates to -1 (K times), then n is probably prime.

7. Repeat from step 5 K times each with a random ‘a’

The Miller-Rabin algorithm was tested and resulted in a much more efficient generation

of prime numbers. It allows generation of primes with a size of 24096 or more in seconds on a

modern computer. It was chosen to be used in our program as a tool to generate prime numbers.

The program (RSA)

The program is made as an application of the RSA method and it is named after the three

researchers who published their paper and thus, named after their names, (Rivest, Shamir and

Adleman, 1977). In this section, the process of generating, encrypting, decrypting and signing is

shown using the program, in python, made for the assignment. The Program code history link is

in Appendix A. In general, the programs commands are as follows:

./rsa.py gen <keysize> <keyname>

./rsa.py encrypt <message> <key> <signer>

./rsa.py decrypt "<cipher>" <key>

./rsa.py export <key>

./rsa.py crack <key>

./rsa.py print <key>

./rsa.py list

6

Key generation

The program generates a random number of a given bit length from user input. The

random number is then tested with the Miller-Rabin test is used to verify it is a prime number.

This step is done twice to find two large primes p, q. Then n is the product of those primes.

Making the only factors {1, p, q, n}. From (RFC 8017 - PKCS #1, 2016), the required

calculation to generate a key pair are as follows:

n is the public key.

Let e=65537 as it is the recommended value. Part of the public key.

Then calculate phi = (p-1)*(q-1). Should be kept secret.

The private key is d = e-1 (mod phi).

Now (n, e) are published to whomever is to send you encrypted messages.

And (d) is kept private to decrypt incoming messages.

Example output of the program generating a 256-bit key pair:

The key can then be exported as public using ./rsa.py export temp2

Encryption

Due to the nature of RSA, the text needs to be in a numeric form. The program, thus,

encodes the text, inputted from the user, into utf-8 bytes that are turned into an integer

representing the word. Example output of the program converting the word “test” into an integer:

>> Word: test or 1953719668

The number is then encrypted using the formula: c = me (mod n) where m is the message

and c is the cipher. Due to a design limitation, the numeric word can not be greater than n. Thus,

each word in the sentence is split into a linked-list, and each word is processed.

7

Example of the encrypted word “test”:

8

Decryption

The decryption process is the reverse of the encryption. However, the private

exponent, d, is needed for the calculation. Thus, we need both the modulus n and private

exponent d (n, d) for the formula m = cd (mod n) where m is the decrypted message and c

is the cipher. For this example, the message is encrypted locally where the private key is

available.

Example of

the decryption

output:

Signing

Having established a key pair having an asymmetric relation, it can be used also for

authentication. In the program, any encrypted message has a reserved last “word” or “block” for

a signature. The signature is encrypted, unlike the text, using the senders private part. The

signeture then can only be decrypted using the corresponding public key.

For example, Hesham and Mustafa want to communicate using RSA encryption. Both

have a key pair of their own. Let’s say Hesham wants to send Mustafa a message saying “Hello

Mustafa”. Both words are encrypted to Mustafa using Mustafa’s public key. Then the program

uses Hesham’s private key to encrypt the signature “sig:hesham” and adds it to the message as

the last word.

9

Cracking a public key

We know that the public key as we established is the pair of numbers (n, e). We also

established that the secret key “d” is calculated using p and q. Thus, the only way to find “d” is

to find p or q. We can use prime factorization to find p or q simply with the following algorithm:

1. Let n be a multiple of p and q.

2. Generate a random number P with 1/2 bit length of n

3. Check if P is prime (Miller-Rabin), If not go to step 2.

4. If P divides n, continue.

5. Calculate q = n/P

6. Calculate phi = (P-1)*(q-1)

7. Calculate d = e-1 (mod n)

After step 7, we should have a “d” that can decrypt any message encrypted with (n, e).

This method is possible with small key sizes. With larger keys, this method will take

years to find p or q in a 2048-bit key. Which is the point of the system. An example of

cracking a 32-bit key, which is vary weak:

The original key:

10

Running the comand ./rsa.py crack crack-test:

This method introduces randomness in finding the factors. A different method is

to count up from a little less then half of n up to n -1. This is slower but works well with

small keys. The latter is found in the code with the name crackKey2() and is currently in

use. The first method is called crackKey(). The flow chart of the second method is in

Appendix A

Conclusion

Through this presentation, the importance of prime numbers in cryptography is

emphasized by generating and using large prime numbers. The first iteration of the program we

have shown that the supplied book algorithm for finding primes works well for numbers up to

2128 in bit length due to it’s nature of counting up to the square root of the number in question.

However, for any larger values, it takes significant amount of time to determine if a given

number is prime. On the other hand, the Miller-Rabin test proves to be faster for greater values.

Miller-Rabin algorithm can test values between 2512 and 24096 in seconds using a modern

computer. Using this method, we can generate large keys that are based on two prime factors,

thus, making communication more secure. For this reason, this method is used on our devices

everytime we try to make a secure connection to the internet. Thus, we conclude that the

backbone of public key cryptography are simply two rather large prime numbers.

11

Appendix A

Basic prime test

(python):

def isPrime(number):

12

 if number == 2:

 return True

 #if 2 devides number then num is not prime. pg.21

 if number % 2 == 0 or number == 1:

 return False

 #largest integer less than or equal square root of number (K)

 rootOfNum = math.sqrt(number)

 K = math.floor(rootOfNum)

 #Take odd D such that 1 < D <= K

 #If D devides number then number is not prime. otherwise prime.

 for D in range(1, K, 2):

 if D % 2 == 0 or D == 1:

 pass

 else:

 if number % D == 0 or number % 5 == 0:

 return False

 return True

13

(Flowchart):

Full code history in a git repository

Code base.

14

https://apollo-server.ddns.net/gitea/Hesham/hesham-rsa

Cracking Algorithm:

15

Bibliography

En.wikipedia.org. 1967. Miller–Rabin Primality Test. [online] Available at:
<https://en.wikipedia.org/wiki/Miller-Rabin_primality_test> [Accessed 20 April 2020].

Tools.ietf.org. 2016. RFC 8017 - PKCS #1: RSA Cryptography Specifications Version 2.2.
[online] Available at: <https://tools.ietf.org/html/rfc8017> [Accessed 20 April 2020].

Rivest, Shamir and Adleman, 1977. A Method for Obtaining DigitalSignatures and Public-Key
Cryptosystems. MIT, [online] Available at: <https://people.csail.mit.edu/rivest/Rsapaper.pdf>
[Accessed 20 April 2020].

16

	Abstract
	Introduction
	Importance of prime numbers
	Algorithms for finding primes
	Book algorithm
	Miller-Rabin algorithm

	The program (RSA)
	Key generation
	Encryption
	Decryption
	Signing
	Cracking a public key

	Conclusion
	Appendix A
	Basic prime test
	(python):
	(Flowchart):

	Full code history in a git repository
	Cracking Algorithm:

	Bibliography

