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Abstract

In  this  paper,  the  importance  of  prime  numbers  in  public  key  cryptography  will  be

discussed. The focus will be on how large prime numbers are found and used in computing other

values that are used in the RSA standard such as keys and why the prime numbers should be

large for security reasons. We’ll also review the methods to break the encryption. Furthermore,

the relation between the values offer asymmetric qualities that are not used only for encryption,

but verification of authors, senders or any entities holding a key such as a company or website.

Introduction

In today’s world, with millions of users are using the internet, the security of user data

and messages should be secure form outsiders. Cyryptography is an essential tool for any sort of

secure communication and is needed for keeping government secrets and documents safe from

other entities trying to harm a nation. There are many kinds of encryption that help with this task.

However, most methods require both sender and receiver to know a common password, phrase

or key. This can become difficult to achieve because sending the  “Secret” over a connection will

give it away to anyone trying to listen in. To solve this problem, public key encryption became

wildly used in almost all connections.

In essence, public key encryption, gives the freedom to send a “key” to anyone who

wants  to  establish  a  secure  connection  without  fear  of  insecurity.  For  example,  The  RSA

encryption algorithm uses key pairs that are labeled “public” and “private”. The public key is

then  used  to  encrypt  a  message  or  any  sort  of  data,  to  then  be  only  decrypted  with  the

corresponding private key, making an asymmetric relation. The key pair can also be used for

making cryptographic signatures by doing to opposite operation. The signature is encrypted with

the message with the senders private key. Making it only readable by the senders public key.

Having unlocked the signature with a given public key makes sure to verify the origin of the

message. For example, let R be a relation between a and b using a public key, where a is the clear

text and b is encrypted text. Then it is true that a R b but not b R a due to the asymmetry found in

the system.

A common example of uses of asymmetric encryption is whenever a user connects to a
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website,  both  parties  exchange  public  keys  to  then  use  this  method to  encrypt  a  temporary

password that is used for symmetric encryption for transferring a lot of data. That is because

asymmetric encryption is usually slower than symmetric encryption such as AES. 
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Importance of prime numbers

Prime  numbers  are  essential  in  the  RSA algorithm due  to  their  nature.  Since  prime

numbers have only two divisors, they can be used to make a key pair that can only be broken

using prime factorization, which can become vary difficult with large numbers. Making prime

numbers perfect for this application.

In the RSA system, two large prime numbers are randomly generated and used to make

other calculations to produce the key pair. For example, 

Let p = 11 and q = 13

Let n = p*q = 143

Then the set factors of n is {1, 11, 13, 143}

This property is used with numbers larger than 24096, which makes calculating p or q near

impossible with today’s computers.

Algorithms for finding primes

This section will go over common algorithms used to find prime numbers which vary in

efficiency.

Book algorithm

 The algorithm found in the book check for primality using a simple process.

The algorithm goes as follows for checking x:

1. If 2 divides x, then the x is not prime. Otherwise continue.

2. Let K be the largest integer less than or equal the square root of x

3. Let 1 < D <= K. Check if for all D, if D divides x, then x is not prime. Otherwise

x is prime.

This algorithm is simple and effective for values less then 264 due to the nature of it

counting up to the square root of the number in question. For larger values, it is recommended to

use a different way. The flowchart and python code are in Appendix A.
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Miller-Rabin algorithm

The Miller-Rabin method try’s to find if, a given n, is not prime rather than ‘is prime’. In

other words, it find if the number is composite and is probabilistic. Under our tests, it holds vary

well. The algorithm is as follows (Miller–Rabin primality test, 1967): 

1. Given n is odd integer and n > 3  

2. Let K = 10 (number of rounds)

3. Choose a; 1 < a < n -1

4. Write n - 1 = 2s *d where d is odd (factor powers of 2 of n-1)

5. Evaluate the sequence ad, (ad)2, (ad)4, ... , (ad)2^s = an-1 in  mod n if a term in

the sequence evaluates to 1, then n is a composite and we say ‘a’ is a ‘witness for the

compositeness’. Otherwise, continue with another ‘a’.

6. If the ‘last’ term evaluates to -1 (K times), then n is probably prime.

7. Repeat from step 5 K times each with a random ‘a’

The Miller-Rabin algorithm was tested and resulted in a much more efficient generation

of prime numbers. It allows generation of primes with a size of 24096 or more in seconds on a

modern computer. It was chosen to be used in our program as a tool to generate prime numbers.

The program (RSA)

The program is made as an application of the RSA method and it is named after the three

researchers who published their paper and thus, named after their names, (Rivest, Shamir and

Adleman, 1977). In this section, the process of generating, encrypting, decrypting and signing is

shown using the program, in python, made for the assignment. The Program code history link is

in Appendix A. In general, the programs commands are as follows:

./rsa.py gen <keysize> <keyname>

./rsa.py encrypt <message> <key> <signer>

./rsa.py decrypt "<cipher>" <key>

./rsa.py export <key>

./rsa.py crack <key>

./rsa.py print <key>

./rsa.py list
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Key generation

The program generates a  random number of  a  given bit  length from user input.  The

random number is then tested with the Miller-Rabin test is used to verify it is a prime number.

This step is done twice to find two large primes p, q.  Then n is the product of those primes.

Making  the  only  factors  {1,  p,  q,  n}.  From  (RFC  8017  -  PKCS  #1,  2016),  the  required

calculation to generate a key pair are as follows:

n is the public key.

Let e=65537 as it is the recommended value. Part of the public key.

Then calculate phi = (p-1)*(q-1). Should be kept secret.

The private key is d = e-1 (mod phi).

Now (n, e) are published to whomever is to send you encrypted messages.

And (d) is kept private to decrypt incoming messages.

Example output of the program generating a 256-bit key pair:

The key can then be exported as public using ./rsa.py export temp2

Encryption

Due to the nature of RSA, the text needs to be in a numeric form. The program, thus,

encodes  the  text,  inputted  from  the  user,  into  utf-8  bytes  that  are  turned  into  an  integer

representing the word. Example output of the program converting the word “test” into an integer:

>> Word: test or 1953719668

The number is then encrypted using the formula: c = me (mod n) where m is the message

and c is the cipher.  Due to a design limitation, the numeric word can not be greater than n. Thus,

each word in the sentence is split into a linked-list, and each word is processed.
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Example of the encrypted word “test”:
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Decryption

The decryption process is  the reverse of  the encryption.  However,  the private

exponent, d, is needed for the calculation. Thus, we need both the modulus n and private

exponent d (n, d) for the formula m = cd (mod n) where m is the decrypted message and c

is the cipher. For this example, the message is encrypted locally where the private key is

available.

Example  of

the decryption

output:

Signing

Having established a key pair having an asymmetric relation, it  can be used also for

authentication. In the program, any encrypted message has a reserved last “word” or “block” for

a  signature.  The  signature  is  encrypted,  unlike  the  text,  using  the  senders  private  part.  The

signeture then can only be decrypted using the corresponding public key. 

For example, Hesham and Mustafa want to communicate using RSA encryption. Both

have a key pair of their own. Let’s say Hesham wants to send Mustafa a message saying “Hello

Mustafa”. Both words are encrypted to Mustafa using Mustafa’s public key. Then the program

uses Hesham’s private key to encrypt the signature “sig:hesham” and adds it to the message as

the last word.
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Cracking a public key

We know that the public key as we established is the pair of numbers (n, e). We also

established that the secret key “d” is calculated using p and q. Thus, the only way to find “d” is

to find p or q. We can use prime factorization to find p or q simply with the following algorithm:

1. Let n be a multiple of p and q.

2. Generate a random number P with 1/2 bit length of n

3. Check if P is prime (Miller-Rabin), If not go to step 2.

4. If P divides n, continue.

5. Calculate q = n/P

6. Calculate phi = (P-1)*(q-1)

7. Calculate d = e-1 (mod n)

After step 7, we should have a “d” that can decrypt any message encrypted with (n, e).

This method is possible with small key sizes. With larger keys, this method will take

years to find p or q in a 2048-bit key. Which is the point of the system. An example of

cracking a 32-bit key, which is vary weak:

The original key:
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Running the comand ./rsa.py crack crack-test:

This method introduces randomness in finding the factors. A different method is

to count up from a little less then half of n up to n -1. This is slower but works well with

small keys. The latter is found in the code with the name crackKey2() and is currently in

use. The first method is called crackKey(). The flow chart of the second method is in

Appendix A

Conclusion

Through  this  presentation,  the  importance  of  prime  numbers  in  cryptography  is

emphasized by generating and using large prime numbers. The first iteration of the program we

have shown that the supplied book algorithm for finding primes works well for numbers up to

2128 in bit length due to it’s nature of counting up to the square root of the number in question.

However,  for  any larger  values,  it  takes  significant  amount  of  time to  determine if  a  given

number is prime. On the other hand, the Miller-Rabin test proves to be faster for greater values.

Miller-Rabin  algorithm  can  test  values  between  2512 and  24096 in  seconds  using  a  modern

computer. Using this method, we can generate large keys that are based on two prime factors,

thus, making communication more secure. For this reason, this method is used on our devices

everytime  we  try  to  make  a  secure  connection  to  the  internet.  Thus,  we  conclude  that  the

backbone of public key cryptography are simply two rather large prime numbers.
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Appendix A

Basic prime test 

(python):

def isPrime(number):
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    if number == 2:

        return True

    #if 2 devides number then num is not prime. pg.21

    if number % 2 == 0 or number == 1:

        return False

    #largest integer less than or equal square root of number (K)

    rootOfNum = math.sqrt(number)

    K = math.floor(rootOfNum)

    #Take odd D such that 1 < D <= K

    #If D devides number then number is not prime. otherwise prime.

    for D in range(1, K, 2):

        if D % 2 == 0 or D == 1:

            pass

        else:

            if number % D == 0 or number % 5 == 0:

                return False

    return True
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(Flowchart):

Full code history in a git repository

Code base.
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Cracking Algorithm:
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